1+3/x=2/x^2

Simple and best practice solution for 1+3/x=2/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+3/x=2/x^2 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

3/x+1 = 2/(x^2) // - 2/(x^2)

3/x-(2/(x^2))+1 = 0

3/x-2*x^-2+1 = 0

3*x^-1-2*x^-2+1 = 0

t_1 = x^-1

3*t_1^1-2*t_1^2+1 = 0

3*t_1-2*t_1^2+1 = 0

DELTA = 3^2-(-2*1*4)

DELTA = 17

DELTA > 0

t_1 = (17^(1/2)-3)/(-2*2) or t_1 = (-17^(1/2)-3)/(-2*2)

t_1 = (17^(1/2)-3)/(-4) or t_1 = (17^(1/2)+3)/4

t_1 = (17^(1/2)-3)/(-4)

x^-1-((17^(1/2)-3)/(-4)) = 0

1*x^-1 = (17^(1/2)-3)/(-4) // : 1

x^-1 = (17^(1/2)-3)/(-4)

-1 < 0

1/(x^1) = (17^(1/2)-3)/(-4) // * x^1

1 = ((17^(1/2)-3)/(-4))*x^1 // : (17^(1/2)-3)/(-4)

-4*(17^(1/2)-3)^-1 = x^1

x = -4*(17^(1/2)-3)^-1

t_1 = (17^(1/2)+3)/4

x^-1-((17^(1/2)+3)/4) = 0

1*x^-1 = (17^(1/2)+3)/4 // : 1

x^-1 = (17^(1/2)+3)/4

-1 < 0

1/(x^1) = (17^(1/2)+3)/4 // * x^1

1 = ((17^(1/2)+3)/4)*x^1 // : (17^(1/2)+3)/4

4*(17^(1/2)+3)^-1 = x^1

x = 4*(17^(1/2)+3)^-1

x in { -4*(17^(1/2)-3)^-1, 4*(17^(1/2)+3)^-1 }

See similar equations:

| 2h+5k-2(2h-8k)= | | y=ln(abs(x^2-25)) | | 7(x-43)2-252=0 | | y^2+1=y^4 | | (3+4i)-(9-7i)= | | x-11=-9 | | -2x+14+4x+15=4 | | 8.4=1.2x | | 3(4+2x)=5(x-4) | | 4x+2x-1= | | 5(8/7)+4(8/7-5)=4 | | 8(x-25)2-392=0 | | 2a+3a=-4 | | -3(3x-2)=37(7+3x) | | 10m-p=-nform | | -1/8(13x) | | 13-40/4*2 | | log(3)(3x+12)=4 | | 4x-y+1=2x-1+3y+5 | | 3(2x^2+1)-(-4x^2)= | | 4x-12=3x+3 | | 1(2)=1(3) | | 4x+4(x-8)=4+5(3x+5) | | 16=13+8x*3 | | -2k+10=-2(x+5) | | 2/3x=6+1/3 | | 8(x-25)squared-392=0 | | -73x-93=-93-73x | | u/-10=-8 | | 14=3y-13 | | 1(1)=1(1) | | 2/3x=61/3 |

Equations solver categories